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We present an approach for efficient, accurate calculations of the transport properties of random media. It is
based on the principle that the wave energy density should be uniform when averaged over length scales larger
than the size of the scatterers. This method captures the effects of the resonant scattering of the individual
scatterer exactly, and by using a coated sphere as the basic scattering unit, multiple scattering contributions
may be incorporated in a mean-field sense. Its application to both ‘‘scalar’’ and ‘‘vector’’ classical waves gives
exact results in the long-wavelength limit as well as excellent agreement with experiment for the mean free
path, transport velocity, and the diffusion coefficient for finite frequencies. Furthermore, it qualitatively and
quantitatively agrees with experiment for all densities of scatterers and contains no adjustable parameter. This
approach is of general use and can be easily extended to treat different types of wave propagation in random
media.@S0163-1829~96!05626-3#

I. INTRODUCTION

The study of waves propagting in strongly scattering ran-
dom media is a subject with a long and rich history. How-
ever, until recently the interest of the physics community
was primarily focusing on quantum, i.e., electronic, waves. It
was the observation of the coherent backscattering effect in
classical wave systems,1 the analogous effect to weak local-
ization in the electronic case, which triggered a burst of in-
terest in further studies of strongly scattering disordered clas-
sical wave systems.1 Although the analogy between quantum
and classical waves works reasonably well, the localization
of classical waves has not been observed as yet, despite the
fact that recent experimental results2 reported very low val-
ues for the diffusion coefficientD. In fact, it was already
realized in the work of van Albadaet al.2 that, unlike elec-
tronic systems, there exists another renormalization mecha-
nism of the diffusion coefficientD in classical wave systems.
Using a scalar Bethe-Salpeter equation in the low-density
regime, van Albadaet al.2 were able to show that the pres-
ence of resonant scatterers may cause the transport velocity
vE to decrease sharply close to the single-scatterer reso-
nances. This renormalization of the diffussion coefficientD
~Refs. 3–9! can be viewed as either being the result of a
different Ward Identity due to an energy-dependent scatter-
ing potential or being caused by a scattering delay due to the
storage of wave energy inside a single scatterer. Therefore,
considerable care has to be exerted when interpreting low
values of the diffusion coefficientD5vEl t/3, since only low
values of the transport mean free pathl t signify localization.
To further extend their results to the vector case, van Albada
et al. simply replaced the single-scatterert matrix with the
vector t matrix. However, this is an oversimplified approxi-
mation to the real vector problem. The polarizations of the
electromagnetic~EM! waves have to be taken into account in
a fully vector calculation in deriving the Boltzmann equa-

tion, starting from the Bethe-Salpeter equation. In addition,
experimental results9 for alumina spheres have shown that as
the volume fraction of the scatterers,f , increases towards
close packing (f.0.60!, there is no structure in the diffusion
coefficient versus frequency. This clearly suggests that there
is no structure in the transport velocity. This behavior is not
observed when extending the low-density theory of van Al-
badaet al. to this high-f regime. It is by now well under-
stood that tolowest order in the densityof the dielectric
scatterers, the strong decrease in the transport velocity is due
to the~single-scatterer! Mie resonances. For higher values of
the density, multiple scattering corrections become appre-
ciable and tend to wash out the single-scatterer resonances,
as observed experimentally.

In the spirit of the coherent-potential approximation
~CPA! a conceptually different approach to the problem of
classical wave propagation in strongly scattering random me-
dia was recently developed10 and obtained a CPA velocity
for f50.60, which is qualitatively consistent with experi-
ment, in not showing any structure as a function of the fre-
quency. Not surprisingly, the newly developed10 coated CPA
for low f gives a CPA velocity which reduces to the regular
phase velocity which is higher than the velocity of light near
Mie resonances. This is an undesirable feature of the CPA
which can be understood to be the result of underestimating
the above-mentioned energy-storage effect. Thus, for small
f , the theory of van Albadaet al.2 seems to give the correct
transport velocityvE , while for largef , it is the coated CPA
approach10,11 which seems to give transport properties con-
sistent with experiment.9

In the present paper, we report the details of an
approach12 for calculating the transport properties of random
media that takes into account the multiscattering effects in a
mean-field sense. It can be applied to all cases of classical
wave propagation in random media, such as acoustic~scalar!,
EM ~vector!, and elastic~tensor! waves. Furthermore, this
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approach gives results which are in qualitative agreement
with experiment forall densities of scatteres. The paper is
organized as follows. In Sec. II we give a detailed descrip-
tion of our general method for scalar and vector waves, em-
phasizing the conceptual difference from the conventional
CPA. For the long-wavelength limit, analytical results are
presented in Sec. III, whereas the numerical results for finite
frequencies are discussed in Sec. IV. Finally, Sec. V is de-
voted to a discussion of the results.

II. MODEL AND METHOD OF CALCULATION

We consider a composite medium of two lossless materi-
als, with dielectric constantse1 and e2 . Our medium is as-
sumed to consist of spheres with diameterd52R and dielec-
tric constante1 randomly placed within the host material
with dielectric constante2 . The random medium is charac-
terized also by f , the volume fraction occupied by the
spheres. The basic idea of effective medium theory is to
focus on one particular scatterer and to replace the surround-
ing random medium by an effective homogeneous medium.
The effective medium is determined self-consistently by tak-
ing into account the fact that any other scatterer could have

been chosen. This procedure manifests the homegenity of the
random medium on average. In conventional effective me-
dium theories, such as the CPA, the effective medium is
determined by demanding that the total cross section~TCS!
of the difference between scattering medium and the effec-
tive medium vanishes on average.13 In the effective medium
the energy density is homogeneous by construction.

However, the position of a sphere in the medium is com-
pletely random, with the exception that the spheres cannot
overlap. This implies that the distribution of spacings be-
tween neighboring spheres is peaked at a distanceRc.R.
Therefore, we may consider a coated sphere as the basic
scattering unit14 ~cf. Fig. 1!. The radiusRc of the coated
sphere isRc5R/ f 1/3. The dielectric constants of the core and
the coat aree1 and e2 , respectively. This procedure also
incorporates some of the multiple scattering effects at differ-
ent centers. With this technique it is, therefore, possible to
obtain reliable information about transport properties for the
whole range of disorder, as has been demonstrated in recent
works.10,11,15

The use of a coated sphere as the basic scattering unit also
implies that the homogeneity of the energy density is not

FIG. 1. ~a! In a random medium composed of dielectric spheres, the basic scattering unit may be regarded as a coated sphere, as
represented by the dashed lines. To calculate the effective dielectric constantē, a coated sphere of radiusRc5R/ f 1/3, is embedded in a
uniform medium. The self-consistent condition for the determination ofē is that the energy of a coated sphere~b! is equal to the energy of
a sphere with radiusRc and dielectric constantē ~c!.
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anymore trivially fulfilled. If we, nevertheless, apply the
ideas of the conventional CPA to this new structural unit we
obtain excellent agreement with experiments for quantities
not directly related to the energy density, i.e., for scattering
and transport mean free path.10,11 In contrast, quantities de-
scribing energy transport, i.e., the energy transport velocity
and diffusion coefficient, show good agreement with experi-
ment for small coating, i.e., for high disorder, but are prob-
lematic for small disorder as they give unphysical results
close to the single-scatterer Mie resonances, although still
being qualitatively correct. In addition, the computational ef-
fort turns out to be quite formidable due to serious conver-
gence problems.

This unphysical behavior may be directly attributed to an
inhomogeneous energy density, especially for large coating,
i.e., small disorder. In the present approach we, therefore,
explicitly choose the averaged energy density homogeneity
as the criterion for the effective medium. Since we are ex-
clusively considering lossless dielectrics, our effective me-
dium dielectric constant has to be real due to energy conser-
vation. This is in contrast to the conventional approches and,
consequently, we have to proceed in two steps: First, we
determine for every frequencyv the real effective dielectric
constantē by demanding theenergy density to be homoge-
neous on scales larger than the basic scattering unit. Then,
in a second step, the physical quantities are calculated from
the ~nonvanishing! scattering cross section of the resulting
arrangement of coated sphere and effective medium.

Since in the above-mentioned arrangement the effective
medium dielectric constant is real and the energy density is
homogenous on scales larger than the basic scattering unit,
the energy transport velocityvE may now be identified with
the phase velocityvp . vp , in turn, is determined by the TCS
of the above-mentioned arrangement. In fact, for the scalar
case our results forvE agree remarkably well with the results
of a similar spirited approach by Jinget al.14 However, our
approach can just as easily treat the vector case for which
even a low-density solution of the corresponding vector-
Bethe-Salpeter equation is absent to date.

The requirement that the energy content of a coated
sphere embedded in the effective medium and being hit by a
plane wave should be the same as the energy stored by a
plane wave in the same volume of the effective medium can
be formulated quantitatively by the self-consistency equation

E
0

Rc
d3rrE

~1!~rW !5E
0

Rc
d3rrE

~2!~rW !, ~1!

where rE
(1)(rW) and rE

(2)(rW) are the energy densities for the
coated sphere and the plane wave, respectively. Clearly, this
very general principle can be applied to any kind of classical
wave propagation. We chose to discuss two, for practical
applications very important, cases, i.e., scalar~acoustic! and
vector~EM! classical waves. For a general scalar wave field
c(rW) the energy density is

rE~rW !5 1
2 @v2e~rW !uc~rW !u2/c21u¹W c~rW !u2#, ~2!

whereas the energy density of vector waves with electric and
magnetic fieldsEW (rW) andHW (rW) is given by

rE~rW !5 1
2 @e~rW !uEW ~rW !u21muHW ~rW !u2#, ~3!

wherem is the magnetic permeability which is taken to be
the same in both materials. Consequently, Eq.~1! together
with either Eq.~2! or Eq. ~3! determines the~real! dielectric
constantē of the effective medium for every frequency. As
mentioned above the energy transport velocityvE is identi-
fied with the so-called phase velocityvp ~Ref. 14! and the
scattering mean free pathl s can be calculated via14

vE.vp5
c

Aē
A12Re~S!/ k̄2, ~4!

l s5
1

A2Im~S!
$@ k̄22Re~S!#

1A@ k̄22Re~S!#21@ Im~S!#2%1/2, ~5!

where k̄5Aēv/c. Re(S) and Im(S) denote the real and
imaginary parts of the self-energyS, respectively. In the
independent scatterer approximation the self-energyS is
given by

S54pn f~0!. ~6!

Here, f (0) denotes the forward scattering amplitude for a
coated sphere embedded in the effective medium and
n51/Rc

3 is the density of scatterers. For scalar waves we
have

f ~0!52
i

k̄
(
l50

`

~2l11!Dl , ~7!

whereas for vector waves it is

f ~0!52
i

2k̄
(
l51

`

~2l11!~Al1Bl !. ~8!

The scattering coeffcientsDl , Al , andBl for a coated sphere
are given in Ref. 14 for scalar (Dl) and in Ref. 16 for vector
waves (Al andBl). Since the right-hand side of Eq.~1! is
trivial, it is the left-hand side which causes most of the com-
putational difficulties. Fortunately, the analytical calculations
can be carried quite far. In the scalar case, using the expres-
sions given in Ref. 14 for the scattered wave field, we find,
after a good deal of cumbersome algebra, that the energy
contentE(s) of the coated sphere, i.e., the left-hand side of
Eq. ~1!, is given by the set of equations

E~s!5E1
~s!1E2

~s!,

E1
~s!5

1

2

v2

c2
e1(

l50

`

ual u2
1

k1
3E

0

k1R

r2drWl
~s!~ j l , j l ;r!,

E2
~s!5

1

2

v2

c2
e2(

l50

`

ual u2
1

k2
3E

k2R

k2Rc
r2dr

3@f l
2Wl

~s!~ j l , j l ;r!1z l
2Wl

~s!~nl ,nl ;r!

12f lz lWl
~s!~ j l ,nl ;r!#,
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Wl
~s!~zl ,z̄l ;r!5~2l11!zl~r!z̄l~r!1 lzl21~r!z̄l21~r!

1~ l11!zl11~r!z̄l11~r!,

f l5~k2R!1/2@ j l~k1R!nl8~k2R!2~k1 /k2! j l8~k1R!nl~k2R!#,

z l5~k2R!1/2@~k1 /k2! j l~k2R! j l8~k1R!2 j l8~k2R! j l~k1R!#,

whereki5Ae iv/c and i51,2. j l andnl denote the spherical
Bessel functions of first and second kinds, respectively. The
al are the scattering coefficients for the field inside the core.
Similarly, for the vector case we use the expressions in Ref.
16 and obtain for the left-hand side of Eq.~1!, i.e., the energy
contentE(v) of the coated sphere,

E~v !5E1
~v !1E2

~v ! ,

E1
~v !5

1

2

v2

c2
e1(

l51

`

~ ucl u21udl u2!
1

k1
3E

0

k1R

r2drWl
~v !~ j l , j l ;r!,

E2
~v !5

1

2

v2

c2
e2(

l51

`
1

k2
3E

k2Ri

k2Rc
r2dr

3@~ ucl u2f l
21udl u2g l

2!Wl
~v !~ j l , j l ;r!

1~ ucl u2z l
21udl u2h l

2!Wl
~v !~nl ,nl ;r!

12~ ucl u2f lz l1udl u2g lh l !Wl
~v !~ j l ,nl ;r!#,

Wl
~v !~zl ,z̄l ;r!5~2l11!zl~r!z̄l~r!1~ l11!zl21~r!z̄l21~r!

1 lzl11~r!z̄l11~r!,

f l5c l~k1R!x l8~k2R!2~k2 /k1!c l8~k1R!x l~k2R!,

z l5c l~k2R!c l8~k1R!2~k2 /k1!c l8~k2R!c l~k1R!,

g l5~k2 /k1!x l~k2R!c l8~k1R!2x l8~k2R!c l~k1R!,

h l5~k2 /k1!c l~k2R!c l8~k1R!2c l8~k2R!c l~k1R!,

where, again,ki5Ae iv/c and i51,2. c and x denote the
Ricatti-Bessel functions of first and second kinds, respec-
tively. The cl and dl are the scattering coefficients for the
field inside the core. We want to point out that the scattering
coefficients depend on the~real! dielectric constantē of the
effective medium. They can be numerically evaluated in a
way similar as described in Ref. 16. In addition, we want to
stress the great similarity between the expressions for scalar
and vector waves. The only differencies are that—in contrast
to scalar waves—the vector waves do not have ans-wave,
i.e., l50, component, whereas the vector wave has two po-
larizations~reflected by the two scattering coefficientscl and
dl). Finally, the expressions forWl

(s) andWl
(v) differ in a

very characteristic way.

III. LONG-WAVELENGTH LIMIT

If a wave with wavelength much larger than the scatterer
size and mean scatterer spacing propagates through a random
medium, it cannot resolve the disorder and, therefore, we
may define a frequency-independent, long-wavelength di-

electric constante` according to

e`5 limv→0S c

vE~v! D
2

. ~9!

The history of long-wavelength dielectric constants itself is
an old but, nevertheless, still very active field. To name but a
few, we mention the classic theories of Bru¨ggeman17 and
Maxwell-Garnett,18 and the more modern works of
Bergman,19 who showed that the classic theories follow from
a more general expression by making special choices for the
so-called Bergman spectral function. For the topology of our
model system, i.e., spheres of dielectric constante1 embed-
ded in a medium with dielectric constante2 and a filling
fraction f of the spheres, it is well known16 that in the scalar
case the correct result fore` is given by the volume-
averaged dielectric constant, whereas in the vector case it is
Maxwell-Garnett theory which gives the right answer. To
calculatee` according to Eq.~9! we have to proceed in two
steps. First, we need to calculateē for v→0 from Eq. ~1!
and use this result to obtain an expression forvE(v) as
v→0. In the scalar case, a careful analysis of Eq.~1! reveals
that the leading contribution asv→0 comes from thel50
terms. If we abreviate the right-hand side of Eq.~1! by Ē(s)

we find for the relevant quantities

a0.11O~v!,

D0.2
1

3
i
v3

c3
AēF ~e22 ē !Rc1~e12e2!

R3

Rc
2G1O~v5!,

E1
~s!.

1

3~2p!2
v2

c2
e1R

31O~v3!,

E2
~s!.

1

3~2p!2
v2

c2
e2~Rc

32R3!1O~v3!,

Ē~s!5
1

3~2p!2
v2

c2
ēRc

3 .

Consequently, we have that

ē5 f e11~12 f !e2 .

For this value ofē it is obviously

Re~S!.4pnRe~2 iD 0 / k̄!.01O~v4!,

and, therefore, our final result for the long-wavelength limit
in the scalar case is@cf. Eq. ~9! and Eq.~4!#

e`5 ē5 f e11~12 f !e2 , ~10!

which is the well-known volume-averaged dielectric con-
stant result. A similar analysis may be carried out for the
more complicated vector case. If we, again, abreviate the
right-hand side of Eq.~1! by Ē(v), we find to leading order in
v that only theE field contributes:

E1
~v !5

2

3

v2

c2
e1ud1u2R31O~v3!,
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E2
~v !5

1

3

v2

c2
e2ud1u2F2g1

2~Rc
32R3!29h1

2 1

k2
6 S 1Rc

3 2
1

R3D G
1O~v3!,

Ē~v !5
2

3

v2

c2
ēRc

3 ,

where we have the following expansions for the scattering
coefficients:

d1.
9e2ē

~2e21e1!~2ē1e2!12 f ~e22e1!~ ē2e2!
1O~v2!,

g1.
1

3 S 21
e1
e2

D1O~v2!,

h1.
2

9
~e22e1!

k2
3

e2
R31O~v6!,

A1.2i
v3

c3
Aē3

~2e21e1!~e22 ē !Rc
31~e12e2!~ ē12e2!R

3

~2e21e1!~2ē1e2!12 f ~e22e1!~ ē2e2!

1O~v5!,

B1.O~v5!.

Inserting these expressions into Eq.~1! results in a quadratic
equation forē which has only one physical solution

ē5e2S 11
3 fa

12 fa D ,
a5

e12e2
e112e2

.

Again, just like in the scalar case, it is this particular value
for ē which makes Re(S) vanish up to orderO(v4) as can
be seen from the expression forA1 ,

Re~S!54pnRe„2 i ~A11B1!/ k̄…501O~v4!,

so that the final result for the long-wavelength dielectric con-
stant in the vector case is the well-known Maxwell-Garnett
result

e`5 ē5e2S 11
3 fa

12 fa D , ~11!

a5
e12e2

e112e2
.

Therefore, for both scalar and vector classical waves our
mean-field approach gives analytically the correct long-
wavelength limit for all values of the filling factor. This is
certainly a clear advantage over the theory of Albadaet al.2

who obtained the correct value Eq.~11! only in the limit
f→0 as well as over our previous approaches10,11which ob-
tained excellent agreement with Eq.~11! for all f only nu-
merically.

IV. FINITE FREQUENCIES

For finite frequencies, of course, no analytical solution of
Eq. ~1! is possible. Fortunately, it turns out that Eq.~1! is
numerically much easier to deal with than the self-
consistency equations of our previous approaches.10,11 To
obtain a converged result, we used a simple fixed-point itera-
tion with the long-wavelength limit as a starting value forē.
The convergence~relative change ofē from one iteration
step to the next being less than 1024) was obtained in almost
all cases with less than ten iterations. After a succesful con-
vergence forē we compute the self-energyS according to
Eq. ~6! and then evalute Eq.~4! and Eq.~5! for the energy
transport velocityvE and the mean free pathl s , respec-
tively. We chose to present these results forvE and l s as a
function of d/l i , whered is the diameter of the dielectric
spheres andl i52pc/vAe1 is the wavelength inside the
sphere. The reason behind that being the fact that strong Mie
resonances of the isolated sphere appear in the limit
e1 /e2→` whend/l i5(n11)/2, with n51,2,3 . . . for the
vector andn50,1,2, . . . for thescalar case. Furthermore, it
should be noted that we used different numbers of scattering
coeffcients in the series given byE(s) andE(v). We found
that increasing the maximal number of scattering coefficients
beyond 10 does not alter the results in the range ofd/l i
which we have considered.

Figures 2 and 3 show the scattering mean free pathl s in
units of the sphere radiusR for scalar and vector classical
waves, respectively, versusd/l i for the experimental setup
of Garciaet al.,9 which consisted of a mixture of alumina
spheres with dielectric constante159 and hollow polypro-
pylene spherese2'1, for different values of the filling factor
f of the alumina spheres. Figures showing the energy trans-
port velocity vE for scalar and vector classical waves, re-
spectively, versusd/l i for the same configurations can be
found in Ref. 12. It can be clearly seen that for low values of
the filling factor vE exhibits large dips near the Mie reso-
nances which become smeared out as the filling factor in-
creases. This displays the fact that due to the multiple scat-
tering contributions the effective medium gets stronger

FIG. 2. The scattering mean free pathl s for scalar waves, cal-
culated by the effective medium theory versusd/l i for alumina
spheres with dielectric constante159 in vacuum (e251) for dif-
ferent values of the filling factorf .
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renormalized asf increases, thus competing with the single-
scatterer effects which dominate at low filling factorsf . This
qualitative behavior has been confimred by experiment.9

To further check the effective medium scheme we com-
pare it with recent experiments of Garciaet al.9 They have
measured the frequency dependence of microwave propaga-
tion in a sample of 1/2-in. polystyrene spheres with index of
refraction 1.59 and filling ratio off50.59. Their experimen-
tal results~solid circles! as well as the results of our effective
medium theory~crosses! are presented in Figs. 4, 5, and 6,
where the frequency dependences of the diffusion coefficient
D5vEl t/3, transport velocityvE and mean free pathl s are
shown. The relation between experimental frequencyn and
d/l i is, in this case,n ~GHz! . 15 (d/l i). The parameters
used in the theoretical calculations aree152.53, e251,
f50.59, andR50.64 cm. It is evident that there is rather

good agreement between the experimental and theoretical
results, both in magnitude and overall frequency dependence.
However,vE is flatter than the experimental one. As for the
comparison of the experimental mean free path and the ef-
fective medium result, Fig. 6, there is indeed a semiquanti-
tative agreement forn>19 GHz but the experimental drop in
low frequencies is very difficult to understand theoretically.

V. DISCUSSION

In summary, we have presented a scheme for calculating
the transport properties of random media. This scheme cap-
tures the effects of Mie resonances, always present in cases
of finite scatterers, exactly and the multiple scattering contri-
butions in a mean-field sense. It is proposed that the choice
of an effective medium is based on the principle that the

FIG. 3. The scattering mean free pathl s for vector waves,
calculated by the effective medium theory versusd/l i for alumina
spheres with dielectric constante159 in vacuum (e251) for dif-
ferent values of the filling factorf .

FIG. 4. The frequency dependence of the diffusion constant for
a sample of 1/2-in. polystyrene spheres with index of refraction
1.59 and filling ratio 59%. The solid circles correspond to the ex-
perimental values whereas the crosses are the results of the effective
medium theory.

FIG. 5. The frequency dependence of the energy transport ve-
locity for a sample of 1/2-in. polystyrene spheres with index of
refraction 1.59 and filling ratio 59%. The solid circles correspond to
the experimental values whereas the crosses are the results of the
effective medium theory.

FIG. 6. The frequency dependence of the scattering mean free
path for a sample of 1/2-in. polystyrene spheres with index of re-
fraction 1.59 and filling ratio 59%. The solid circles correspond to
the experimental values whereas the crosses are the results of the
effective medium theory.
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wave energy density should be uniform when averaged over
length scales larger than the size of the inhomogeneities. We
have applied this effective medium theory to scalar and vec-
tor waves. In both cases a careful analysis of the long-
wavelength limit rediscovers the well-known results. For fi-
nite frequencies the computational effort as compared to
approaches based on an average TCS~Refs. 10,11! is greatly
reduced and there have been no convergence problems for all
parameters which we considered. In addition, the theory con-
tains no adjustable parameter. The results for the scattering
mean free pathl s are consistent with the excellent results
that have been obtained with the aforementioned
approaches.10,11 Furthermore, the theory obtains values for
the energy transport velocityvE that are consistent with ex-
perimental values for all filling factorsf , thus bridging the
gap between the low-density theory of Albadaet al.2 and the
high-density results of Refs. 10,11 in a very natural way.
This scheme can be easily applied to different types of clas-

sical waves. In particular, the application of this method to
elastic wave will be very interesting, since for this case no
theory exists as yet.
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